STATIC SOFTWARE WATERMARKING

Claudiu Chiru, Spiru Haret University Constanta
E-mail claudiu.chiru@seanet.ro

Abstract

Watermarking is a technique for adding a message
to data to identify the owner of the data. In this paper
we propose a method to watermark software by a static
method.

Key  words:  software  watermarking,  static
watermarking, opaque predicate

1. INTRODUCTION

Appearance of Internet represented a true leap
referring to the inter-human communication, offering
new ways to make business, access to electronic
libraries, electronic newspapers. The possibilities are
enormous. The information can freely move in this
immense network. Still exist problems concerning
protection of the multimedia information and to the
copyright. The cryptography can offer a wide scale of
security services, but once legally entered in the
possession of a multimedia document, later on can be
created copies, and using the same network (Internet),
the material can be spread very quickly. The
watermarking technique offers a solution for the
document's protection (images, sounds, texts), so that it
can be verified the document's authenticity. By
copying, the information with regard to the document's
license will be transmitted to the copy. In the
verification's moment, the license information is
extracting, and so can prove the property rights
referring to the document. In English, watermark has
the meaning of filigree.

1.1. Definition of Watermark

The watermark is a signal that can be added to the
digital data (video, audio, static images) which can be
detected or extracted later. The extracted signal can
offer some information about data that contained it.

1.2. Marking the Software

The watermarking technique can be extended to
software. Colberg, in his paper (Colberg 1999) refers
to two types of watermarks: static and dynamic
watermark. The static watermarks are embedded in

string sections, debugging information sections or in
the code section. Dynamic watermarks are stored in the
program’s execution state.

2. STATIC MARKING OF THE C/C++
PROGRAMS

This method proposes to mark the C programs by
inserting a code sequence, which doesn't execute. This
marking method uses an opaque predicate that is hard
to evaluate.

2.1. Marking by Inserting of a New Function in the
Program

Starting from Monden et al. paper (Monden et al.
2000) the marking method consists in the introducing
of a function in a C / C++ program, that will never be
executed. The fact that the function will not be
executed is ensured by the existence of an opaque
predicate, with a true/or false value, always.

if (PY)

{
}

func(p,q,r,..)

p’ can be a predicate that results from an equation
with integer coefficients with solutions in the integer
numbers set. Also, p' can be the negation of a false
predicate. p" can be selected from the set of the
inequalities that have integer numbers solutions.

After program's compilation, the function's body is
localized and then changes are made in structure of the
function code, according to the watermark which is
entered. The program's execution will be followed
normally, because the changes will not affect the
program (function doesn't execute).


mailto:claudiu.chiru@seanet.ro

Figure 1. Graph in the form of binary tree with two
circular lists

The method is vulnerable at the following attacks:

= The code's re-ordering. Certain instruction
sequences can be executed in another order, if the
result of the instruction sequences is not depending
on their succession. By code's re-ordering, the
message will become unintelligible.

= The code's decompilation and compilation. The
obtained code will be functional, but the
watermark message can not be extracted.

=  The determination of the place where is inserted
function and its elimination from program. This
can be made using an analyzing program, which
can generate the program's execution flow. So,
after more executions, one can remark that the
function never executes, hence it is a "dead" code,
which can be eliminated from program. Selecting
of an opaque predicate ( which can have the true or
false values ) prevents this kind of attacks. A
source of opaque predicates is the utilization of the
expressions with pointers.

v=random(m) /* random number
generation in the interval
[0,m], m>n */

/* n is the number of vertices
in the 1left or right subtree
*

/
p=g=root;/* root - pointer to
the root */

for(i=1;i<=v;i++)

Figure. 2. Example of inserting a function with an
opaque predicate

The graph from figure 1 is a tree in which the last
node from each sub-tree has a pointer towards root.

Number of vertices from the left sub-tree is equal with
that from the right sub-tree.

By inserting of the graph in program, is possible
that at a certain moment, a predicate p ! = q to have the

true value, and at other time moment, p ! = q to have
the false value. In this situation, the instruction

1 = q)
f (a, b, c, ...)

if (p
has, as probable result, the execution of the "f"
function. In such conditions, "f" must be designed in a
way that it doesn't modify the variables from program
and, in the same time, to incorporate the static
watermark.

The f function will be executed with a probability
1

equal to —-. So, the code sequence that contains the
n

watermark will be executed with the same probability
and the f function will use only local variables.

The structure of such a function might be:

void f (int a,int b,int c,..)
{int d;

int £[10];

d=a+b+c; /* Identifying
sequence */

/* Inserting position for the
watermark */
f[0]l=1;f[1]=1;£[2]=1;..;E[9]=1;

return;

After the compilation phase the new watermark can
be inserted by replacing the identification sequence and
the watermark support (£[0],£([1],...). The
assembly code is:

mov ax, [bp+4] function
add ax, [bp+6] identification
add ax, [bp+8] sequence
mov si,ax

N

mov word ptr [bp-14],0001
mov word ptr [bp-12],0001 Code

mov word ptr [bp-10],0001 sequence
mov word ptr [bp-0e],0001 which is to
mov word ptr [bp-0c], 0001 be replaced

mov word ptr [bp-02],0001

J

The program must be equivalent from the
functionality’s point of view. So, the replacement will
take place only in the source operand area from the
mov instructions. Code size depends on watermark
size. For example, a two byte watermark can be
inserted in a f[0]=1 instruction. For an n byte
watermark approximately n/2 instructions will be
necessary. The number of instructions can be reduced
to half if we can use 32 bits variables such as unsigned
long.



3. CONCLUSIONS

Above-mentioned methods represent viable
solutions for the program protection against
unauthorized utilization. They don't stop a malevolent
user to use a program purchased by illegal ways. On
the other hand, if necessary, can be proved the fact that
the user is not the right owner of the program.

4. REFERENCES

(Colberg 1999) Christian Collberg - Software
watermarking: Models and Dynamic Embeddings
POPL 99, Proceedings.

(Monden et al. 2000) Akito Monden, Hajimu lida,
Ken-ichi Matsumoto, A Practical Method for
Watermarking Java Programs, The 24™ Computer

Software and Application Conference, Taipei, Taiwan,
Oct 2000.



	Abstract

